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We first show that the integers f, g and A determine
the group C; x Cp X Cgy. First we write fgh as a
product of distinct primes pSv p$» ... p§, e;; > 0. Then
Jg can be written in the form p§: p§= ... pge, where 0 <
e, < e Finally, f=p$upsn...pn,and 0 <e;, <e;, <
e;5. The order of the group C; x Cp, X Cpy, is then f3g2h
=n=p{'ps... pi, where e, = ¢, + ¢, + €.

If @ and b are relatively prime then the direct product
of the cyclic groups C, and C, of orders a and b is
isomorphic to the cyclic group C,, of order ab.
Therefore

Cf= Cpiu X Cpin X ooo X Cpiu,
Cfx = CPT“ X Cpfzz X oo X CPi"’
and
Cfgll = Cpfu X Cpfu X oo X Cpi""
Since the factors in a direct product commute, we have
Cf X Cfx X Cth = (Cpfu X Cpfn X Cpfu)
X (Cppn X Cpgu X Cpgn) X ...
X (Cppu X Cppa X Cppo)-

The integers e, are called the invariants of the group.
A basic theorem in group theory says that an Abelian
group is completely characterized by its invariants,
from which our assertion follows.

It follows that to enumerate the classes of equivalent
derivative lattices of index n, we need to know the
number of ways each e; can be written as a sum of
three non-negative integers ey, €y, €;; with 0 < e, <e;,
< e; < e. Let ny(e;) represent this number. Then,
since the partitions of the e, are independent, any one
can be combined with any other. Thus the number of
ways of writing L/L’ as a direct product of three cyclic
groups is equal to the product ns(e,) ... ny(e,).
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This argument can easily be modified to hold for
lattices in any dimension d.

Example: Let L be a two-dimensional lattice and L’
a sublattice of index » = 2% x 54 x 7 x 11% In
dimension 2, ¢, = e;; + €, and s0 e, = ¢, — €.
Assuming 0 < ¢;, < e, < e;, we obtain the following
formula for n,(e)):

(e, + 1)/2
e/2 + 1

Thus 7n,(3) =2, n,(4) =3, n,(1) =1 and n,(2) = 2. The
product of these numbers is 12, so there are twelve
classes of derivative lattices of index n = 2% x 54 x 7 x
112,

Unfortunately there is no simple formula* for n,(e)
except in the case d = 2. However, there is no difficulty
in calculating n,(e;) by hand if e is not too large (or by
computer if it is).

if e;is odd

ny(e) =
. if e, is even.

The authors are grateful to Dr David Harker for
many fruitful remarks.
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Abstract

Incommensurate modulated structures are no longer
‘perfect’ crystals in F3, where E£" is the n-dimensional
affine Euclidian space; on the other hand they are
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crystals in £4, E5 or F° whose cell is obtained from the
experimental diffraction pattern in £*3. But Bragg’s law
is more general and it is shown that hyperplane incident
waves are diffracted by sets of lattice hyperplanes of
perfect crystals of £".
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Introduction

Incommensurate modulated structures such as -
Na,CO,; (Van Aalst, Den Hollander, Peterse & de
Wolf, 1976), K,Pt(CN),Br,.,.xH,0 (Comes, Lambert,
Launois & Zeller, 1973; Comes, Lambert & Zeller,
1973), TaS, (Williams; Parry & Scruby, 1975;
Brouwer & Jellinek, 1974), Fe,_,O (Andersson &
Sletnes, 1977; Yamamoto, Nakazawa & Tokonami,
1979) no longer have translational periodicity in £°.

If we use one, two or three more dimensions, these
modulated structures recover a translational periodicity
and consequently are crystals* in £4, F° or ES. In these
superspaces we define the translation lattice from the
complete experimental diffraction pattern which con-
sists of Bragg reflections and their satellites (de Wolf,
1974, 1977; Janner & Janssen, 1977).

On the other hand, the Ewald construction for
crystal diffraction has been generalized to a special
four-dimensional space where the space—time sym-
metries are considered (Janner & La Fleur, 1971). It
will be useful for the description of diffraction pheno-
mena in the one-phonon case or when the crystal is
placed in a monochromatic laser field or a sound wave.

But the von Laue and Bragg laws are still more
general because we can consider in £* the diffraction of
monochromatic hyperplane waves by crystals and
further the extension to £".

Sets of lattice hyperplanes in a perfect crystal of £"

Let a perfect crystal be of FE", one simple cell
(Oa, ... a,) of which is chosen as a basis of £".

The lattice pointst are joined together in sets of
parallel equidistant lattice rows, planes and hyper-
planes T — (kk) in E?, (hkl)in E3, (hkim)in E*, (h, ... h,)
in £" - represented by the following equations: §

xh+yk=¢ in E?
xh+yk+zl=0 in E? a)
xh+yk+zl+tm=0 inE*
xh + ...+ x"h,=0 inE"
Miller indices hklm, h, ... h, are relative integers with-
out a common divisor and 6 = ... =2, —1, 0, +1, +2,

* Definition of a perfect crystal in £”: an infinite object whose
Abelian group of all the translations that leave it unchanged as a
whole is isomorphic to Z”", Z being the additive group of all the
relative integers (Weigel & Berar, 1978).

T We recall that the elements t=u"a, + ... + u"a,, where n', ...,
n" are all the n-tuplets of relative integers. The ends of vectors t are
the nodes or the points of the lattice.

I The hyperplanes of £" are (n — 1)-dimensional spaces £"~! in
E™. So a straight line is a hyperplane of £?, a plane is a ‘hyperplane’
of E3, etc.

§In F? OX = xa + yb + ze¢ and so it is unavailing to write
equation (1) as xk/a + yk/b + zl/c = o.
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... We write dy, dyppy @y dy, . 4, for the interhyper-
planar spacings, i.e. the equidistances between two
nearest rows, planes or hyperplanes of the set: for
example, it is the distance between the hyperplane
which contains origin O (6 = 0) and the nearest one
(for example o = +1) which intersects axes x1, ... x" at
points Ay, ..., 4, with OA, = a,/h,, ..., OA, = a,/h,.
See Fig. 1 where a concrete example in £* is repre-
sented.

Diffraction of monochromatic hyperplane waves by a
crystal in F*

Let monochromatic hyperplane waves W, of wave-
vector k, be incident upon a crystal in £" (see Figs. 2
and 3), where k, = 27S,/4,: S, is the unit vector in the
incident direction and 4, is the wavelength. So the wave
fronts are straight lines in £2, planes in £* and hyper-
planesin E4,..., E".

'

Fig. 1. O abed is a cell of hexaclinic crystal in £4. The space E3,
which contains the tetrahedron 4ABCD, is the hyperplane nearest
to origin O among the set (1, 3, 2, 4) of the lattice hyperplanes
in this crystal (in this case: O4 = a, OB = b/3, OC = ¢/2 and
OD = d/4). Point H is the intersection of hyperplane E? with
the straight line drawn from O and orthogonal to E°: so OH =
dl324'

Fig. 2. Scattering in £" of hyperplane waves W, by two centers
X,and X,,. If n = 4, W, and W are three-dimensional spaces.
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Fig. 3. Bragg’s law in £2, £3 and E* (or E").
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If we suppose that the waves W, are elastically
scattered by the points of the crystal lattice, they will be
diffracted in the direction of unit vector S by a set of
lattice hyperplanes (&, ... h,) if the following necessary
condition, generalized von Laue’s law, is verified.

S'~ So
Ao

where the vectors a'®, ... a™ are defined by the rela-
tions a,;.a”* = & (Kronecker symbols), i.e. (a*!,..., a*")
is the dual basis (in £*") of the basis (a,, ..., a,) of E”,
and h, ... h, are the Miller indices of the set (A, ... A,).

Proof: see Fig. 2: X, and X, are two scattering
centers in the crystal. Sy, and S,, are two rays of the
incident parallel beam meeting X, and X . The incident
wave W, at X —orthogonal to S,—intersects S, at point
P. S, and S, are two rays of the scattered parallel beam
starting from X, and X,. The wave} W scattered by
X ~orthogonal to S—intersects S, at point Q.

The ray striking X, travels a longer distance than the
ray striking X ; the difference is PX, — X,Q0 = X X,
(S — S,) and the corresponding phase difference is
—dk.X,X,, where dk = k — k, = 272(8 — Sy)/Ay=27s.

The proof can be continued in exactly the same way
as in F3, Bragg’s law is

sl = lief Il 3

So it only agrees with part of the necessary condi-
tions for diffraction (2).

In fact, as in E3, we have s = 2 sin §/4,, where 281s
the angle between Sy, and S and rj5 4 X dy,. 4 =1
(see theorem).

So, Bragg’s law can also be written, as it usually is,

s= h,a™ + ...+ h,a™, (2)

=T =

Ao=2dy, .1 Sin Gy 4, (3"

Theorem: r} _, is orthogonal to the lattice hyper-
planes (h, .. h)andr,, o X8y p =1

Proof in E": (1) Let'the hyperplane (h, ... h,) meet

the origin O. The coordinates of the general point X
(x! ... x™ of this hyperplane verify (1) with ¢ = 0.
Therefore,

oX.r}¥ , = (x'a).(ha*)=x'h;=0

T Elastically means that the wavelength A of the scattered waves
W equals A,.

F It is more correct to write that I is the hyperplane tangential
(orthogonal to S) to the spherical wave scattered by X,.

according to (1). Of course, the two sums over i and j,
from 1 to n, are understood according to Einstein’s
convention. Consequently, rf  , is orthogonal to
(h,...hy).

(2) Let us generalize Fig. 1 to space £": the spacing
dy, ...n, = OH is the orthogonal projection of the vector
OA, on the stralght line which supports the normal to
(h, ... h,) whose v is the unit vector; therefore

%
dy,.» = OH = 0A,.v= QA Thke

Thi...hn

*
_ a"r’h...hn _ 1

* * *
hrm ke Thehn

Remark: the second-, third-, etc. order reflections
upon the set of lattice hyperplanes (k, ... h,), where
h, ... h, are relative integers without any common
divisor, are included in Bragg’s law such as is written

in (3') if we also use the fictitious sets (2h,...2h,),
(3h, ... 3h,), etc., where the spacings ds, ... 2, equal
n/2 etc.

Conclusion

We have proved in this paper that the monochromatic
hyperplane waves of E" are diffracted by the lattice
hyperplanes of a perfect crystal according to the
generalized von Laue law which contains the gen-
eralized Bragg law. Note that von Laue’s and Bragg’s
original laws in E? are special cases of those discussed
here.
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