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We first show that  the integers f ,  g and h determine 
the group C/ x C/g x Cfg h. First  we write f gh  as a 
product  of  distinct primes p~,3 p~,  . . .  p~,,, exa > 0. Then 
f g  can be written in the form p~,~ p ~  . . .  p~?~, where 0 < 
el2 _< eta. FinallY, f = "ell " e ~ , l  ~'2 . . . . . .  p~?,, and 0 < et~ < et2 < 
el3. The order of  the group C / x  Cfg x Cfg h is then fag2h  
= n = p~ ,p~ . . ,  pek~, where el = el~ + et2 + eia. 

I f  a and b are relatively prime then the direct product  
of  the cyclic groups C~ and C b of orders a and b is 
isomorphic to the cyclic group Ca~ , of  order ab. 
Therefore 

c f =  x x . . .  x 

Cfg=  Cp~,, X Cp~2 X ... X Cp~,,, 

and 

cf,,, = c,,f,, x c , , ,  x . . .  x c , , , .  

Since the factors  in a direct product  commute ,  we have 

Cf X Of, X Of& h -- (Cpf,, X Cp~,, X Cp~,,) 

x x x x . . .  

x x x 

The integers e u are called the invariants of  the group. 
A basic theorem in group theory says that  an Abelian 
group is completely character ized by its invariants,  
f rom which our assertion follows. 

It follows that  to enumerate  the classes of  equivalent 
derivative lattices of  index n, we need to know the 
number  of  ways  each e~ can be written as a sum of 
three non-negative integers e~l, e~2, e~3 with 0 < el~ < el2 
< el3 < e~. Let n3(e~) represent this number.  Then, 
since the parti t ions of  the e t are independent,  any one 
can be combined with any other. Thus the number  of  
ways  of  writing L / L '  as a direct product  of  three cyclic 
groups is equal to the product  n3(el) . . .  n3(ek). 

This a rgument  can easily be modified to hold for 
lattices in any dimension d. 

Example: Let L be a two-dimensional  lattice and L '  
a sublattice of  index n = 23 x 54 x 7 x 112 . In 
dimension 2, e t = et~ + el2 and so et2 = e t - etl. 
Assuming 0 < ell < et2 < e i, we obtain the following 
formula  for n2(ei): 

/ (el + 1)/2 if e I is odd 
n2(et) 

e l / 2 +  1 i re  t i seven .  

Thus n2(3) = 2, n2(4) = 3, n2(1) = 1 and n2(2 ) = 2. The 
product  of  these numbers  is 12, so there are twelve 
classes of  derivative lattices of  index n = 23 × 54 x 7 x 
112 . 

Unfor tunate ly  there is no simple formula* for nd(e l) 
except in the case d = 2. However ,  there is no difficulty 
in calculating nd(et) by hand if e t is not too large (or by 
computer  if it is). 

The authors  are grateful to D r  David  H a r k e r  for 
m a n y  fruitful remarks .  
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Abstract  

Incommensura te  modulated structures are no longer 
'perfect '  crystals in E 3, where E n is the n-dimensional 
affine Euclidian space;  on the other hand  they are 

0567-7394/83/010076-03 $01.50 

crystals  in E 4, ~-5 or E 6 whose cell is obtained f rom the 
experimental  diffraction pat tern in &-* 3. But Bragg 's  law 
is more  general and it is shown that  hyperplane incident 
waves are diffracted by sets of  lattice hyperplanes  of  
perfect crystals of  E n. 
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Introduction 

Incommensurate modulated structures such as 7- 
Na2CO 3 (Van Aalst, Den Hollander, Peterse & de 
Wolf, 1976), K2Pt(CN)4Br0. a.XH20 (Comes, Lambert, 
Launois & Zeller, 1973; Comes, Lambert  & Zeller, 
1973), TaS 2 (Williams,. Parry & Scruby, 1975; 
Brouwer & Jellinek, 1974), Fel_xO (Andersson & 
Sletnes, 1977; Yamamoto,  Nakazawa & Tokonami, 
1979) no longer have translational periodicity in E 3. 

If we use one, two or three more dimensions, these 
modulated structures recover a translational periodicity 
and consequently are crystals* in E 4, E 5 or E 6. In these 
superspaces we define the translation lattice from the 
complete experimental diffraction pattern which con- 
sists of Bragg reflections and their satellites (de Wolf, 
1974, 1977; Janner & Janssen, 1977). 

On the other hand, the Ewald construction for 
crystal diffraction has been generalized to a special 
four-dimensional space where the space-time sym- 
metries are considered (Janner & La Fleur, 1971). It 
will be useful for the description of diffraction pheno- 
mena in the one-phonon case or when the crystal is 
placed in a monochromatic laser field or a sound wave. 

But the yon Laue and Bragg laws are still more 
general because we can consider in E 4 the diffraction of 
monochromatic hyperplane waves by crystals and 
further the extension to E n. 

Let a perfect crystal be of E n, one simple cell 
(Oal ...  a,)  of which is chosen as a basis of E n. 

The lattice pointst  are joined together in sets of 
parallel equidistant lattice rows, planes and hyper- 
planes :l: -- (hk) in ~-2, (hkl) in E 3, (hklm) in E 4, ( h i . . .  hO 
in E ~ - represented by the following equations: § 

xh  + y k  = o in  •2 "~ 
xh  + y k  + z l =  o in E a 
xh  + y k  + z l  + tm = o in E 4 

x lh I + . . .  + x nh, = o in E n. 

(1) 

d 

Miller indices hklm,  hl . . .  h n are relative integers with- 
out a common divisor and o . . . .  - 2 ,  - 1 ,  0, + 1, +2, 

* Definition of  a perfect crystal in E":  an infinite object whose 
Abelian group of  all the translations that leave it unchanged as a 
whole is isomorphic to Z n, Z being the additive group of  all the 
relative integers (Weigel & Berar, 1978). 

We recall that the elements t = u ~ a~ + ... + u" a,,  where n 1 . . . . .  
n" are all the n-tuplets of  relative integers. The ends of  vectors t are 
the nodes or the points of  the lattice. 

:~ The hyperplanes of  E ~ are (n - 1)-dimensional spaces E n-I  in 
E ~. So a straight line is a hyperplane of  E 2, a plane is a 'hyperplane'  
of  E 3, etc. 

§ In E 3 0 X  = xa  + y b  + ze and so it is unavailing to write 
equation (1) as x h / a  + y k / b  + z l / c  = o. 

. . . .  We write dhk, dhk l, dhktm, dh,  . . "  h. for the interhyper- 
planar spacings, i.e. the equidistances between two 
nearest rows, planes or hyperplanes of the set: for 
example, it is the distance between the hyperplane 
which contains origin O (o = 0) and the nearest one 
(for example o = + 1) which intersects axes x 1, ... x" at 
points A~, ..., A, ,  with OA 1 = a l /h l ,  . . . ,  O A ,  = a J h  h. 
See Fig. 1 where a concrete example in E 4 is repre- 
sented. 

Diffraction of monochromatic hyperplane waves by a 
crystal in E n 

Let monochromatic hyperplane waves W 0 of wave- 
vector k o be incident upon a crystal in E n (see Figs. 2 
and 3), where k o = 27tSo/20:S0 is the unit vector in the 
incident direction and 20 is the wavelength. So the wave 
fronts are straight lines in E 2, planes in E 3 and hyper- 
planes in E4, . . . ,  En. 

Sets of lattice hyperplanes in a perfect crystal of E ~ 

Fig. 1. O abed is a cell of  hexaclinic crystal in E 4. The space E a, 
which contains the tetrahedron A B C D ,  is the hyperplane nearest 
to origin O among the set (1, 3, 2, 4) o f  the lattice hyperplanes 
in this crystal (in this case: OA = a, O B  = b/3 ,  O C  = c /2  and 
O D  = d/4) .  Point H is the intersection of  hyperplane E 3 with 
the straight line drawn from O and orthogonal to E3: so O H  = 

d1324. 
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Sop 

So 
S0q 

Fig. 2. Scattering in E n of  hyperplane waves Wo by two centers 
Xp and X o. If  n = 4, W o and W are three-dimensional spaces. 

E2 E3 E 4 

Fig. 3. Bragg's law in E 2, ~-3 and E 4 (or En). 
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If we suppose that the waves W 0 are elastically']" 
scattered by the points of the crystal lattice, they will be 
diffracted in the direction of unit vector S by a set of 
lattice hyperplanes (h t ... h,,) if the following necessary 
condition, generalized von Laue's law, is verified. 

S -  S 0 
s -  - -  - r ~ ,  . . .  h n =  ht al* + "" + h,,a"*, (2)  

2o 

w h e r e  the vectors a a*, ... a"* are defined by the rela- 
tions ai. a J* = ~ (Kronecker symbols), i.e. (a* t,.. . ,  a , , )  
is the dual basis (in E* ' )  of the basis (at, ..., an) of E ", 
and h i . . .  h n are the Miller indices of the set ( h r . . .  hn). 

Proof." see Fig. 2: Xp and Xq are two scattering 
centers in the crystal. Sop and Soq are two rays of the 
incident parallel beam meeting Xp and Xq. The incident 
wave W 0 at X~or thogonal  to So--intersects Soq at point 
P. Sp and Sq are two rays of the scattered parallel beam 
starting from Xp and Xq. The wave:l: W scattered by 
Xq-orthogonal to S-intersects Sp at point Q. 

The ray striking Xq travels a longer distance than the 
ray striking Xp; the difference is PXq - XpQ = XpXq 
(S - S 0) and the corresponding phase difference is 
--Ak. XpXq, where Ak = k -- k 0 = 2n(S -- S0)/20 = 2us. 

The proof can be continued in exactly the same way 
as in E s. Bragg's law is 

[Isll----[Ir~'...h II. (3)  

SO it only agrees with part of the necessary condi- 
tions for diffraction (2). 

In fact, as in E s, we have s = 2 sin 0/2 o, where 20 is 
the angle between S O and S and r* = 1 h l . . . h n  X dh~...h ~ 
(see theorem). 

So, Bragg's law can also be written, as it usually is, 

2 0 = 2dh,... h. sin Oh,... h.• (3')  

Theorem:  r'~, ... h. is orthogonal to the lattice hyper- 
planes (ha ... h.)  and r~ h x d  h h =1"  

• I * ' "  n 1 ' ' "  n 

P r o o f  m En: (1) Let the hyperplane (h t ... h,) meet 
the origin O. The coordinates of the general point X 
(x  t . . .  x n) of this hyperplane verify (1) with tr = 0. 
Therefore, 

OX. r*  = ( x l a t ) . ( h j a  *j) = x i h t  0 x~ ... h. 

~f Elastically means that the wavelength ;t of the scattered waves 
W equals 2 o. 

:]: It is more correct to write that W is the hyperplane tangential 
(orthogonal to S) to the spherical wave scattered by X o. 

according to (1). Of course, the two sums over i and j ,  
from 1 to n, are understood according to Einstein's 
convention. Consequently, r~' ... h, is orthogonal to 
(hi  . . .  hn). 

(2) Let us generalize Fig. 1 to space En: the spacing 
dh,.., h, = O H  is the orthogonal projection of the vector 
OA t on the straight line which supports the normal to 
(h t ... hn) whose v is the unit vector; therefore  

OA t. r* hx. . .hn  
dh, ... h. = O H  = O A  t. v -  

r*  h i . . . h n  

a t. r*  1 hl...hn 

htr~l...h" r* h i . . . h n  

R e m a r k :  the second-, third-, etc. order reflections 
upon the set of lattice hyperplanes (h t ... hn), w h e r e  
h t . . .  h n are relative integers without any common 
divisor, are included in Bragg's law such as is written 
in (3') if we also use the fictitious sets (2h t ... 2ha), 
(3h t ... 3hn), etc., where the spacings d2h ' . . .  2 h .  equal 
dh, ... h /2  etc. 

C o n c l u s i o n  

We have proved in this paper that the monochromatic 
hyperplane waves of ~-" are diffracted by the lattice 
hyperplanes of a perfect crystal according to the 
generalized von Laue law which contains the gen- 
eralized Bragg law. Note that von Laue's and Bragg's 
original laws in ~-s are special cases of those discussed 
here• 
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